Regulation of renal sodium-dependent phosphate co-transporter genes (Npt2a and Npt2c) by all-trans-retinoic acid and its receptors

Author:

Masuda Masashi1,Yamamoto Hironori1,Kozai Mina1,Tanaka Sarasa1,Ishiguro Mariko1,Takei Yuichiro1,Nakahashi Otoki1,Ikeda Shoko1,Uebanso Takashi1,Taketani Yutaka1,Segawa Hiroko2,Miyamoto Ken-ichi2,Takeda Eiji1

Affiliation:

1. Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Kuramoto-Cho 3-18-15, Tokushima City, 770-8503, Japan

2. Department of Molecular Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Kuramoto-Cho 3-18-15, Tokushima City, 770-8503, Japan

Abstract

The type II sodium-dependent phosphate co-transporters Npt2a and Npt2c play critical roles in the reabsorption of Pi by renal proximal tubular cells. The vitamin A metabolite ATRA (all-trans-retinoic acid) is important for development, cell proliferation and differentiation, and bone formation. It has been reported that ATRA increases the rate of Pi transport in renal proximal tubular cells. However, the molecular mechanism is still unknown. In the present study, we observed the effects of a VAD (vitamin A-deficient) diet on Pi homoeostasis and the expression of Npt2a and Npt2c genes in rat kidney. There was no change in the plasma levels of Pi, but VAD rats significantly increased renal Pi excretion. Renal brush-border membrane Pi uptake activity and renal Npt2a and Npt2c expressions were significantly decreased in VAD rats. The transcriptional activity of a luciferase reporter plasmid containing the promoter region of human Npt2a and Npt2c genes was increased markedly by ATRA and a RAR (retinoic acid receptor)-specific analogue TTNPB {4-[E-2-(5,6,7,8-tetrahydro-5,5,8,8-tetra-methyl-2-naphtalenyl)-1-propenyl] benzoic acid} in renal proximal tubular cells overexpressing RARs and RXRs (retinoid X receptors). Furthermore, we identified RAREs (retinoic acid-response elements) in both gene promoters. Interestingly, the half-site sequences (5′-GGTTCA-3′: −563 to −558) of 2c-RARE1 overlapped the vitamin D-responsive element in the human Npt2c gene and were functionally important motifs for transcriptional regulation of human Npt2c by ATRA and 1,25(OH)2D3 (1α,25-dihydroxyvitamin D3), in both independent or additive actions. In summary, we conclude that VAD induces hyperphosphaturia through the down-regulation of Npt2a and Npt2c gene expression in the kidney.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3