Proximal Tubular Phosphate Reabsorption: Molecular Mechanisms

Author:

Murer Heini1,Hernando Nati1,Forster Ian1,Biber Jürg1

Affiliation:

1. Institute of Physiology, University of Zürich, Zürich, Switzerland

Abstract

Renal proximal tubular reabsorption of Pi is a key element in overall Pi homeostasis, and it involves a secondary active Pi transport mechanism. Among the molecularly identified sodium-phosphate (Na/Pi) cotransport systems a brush-border membrane type IIa Na-Pi cotransporter is the key player in proximal tubular Pi reabsorption. Physiological and pathophysiological alterations in renal Pi reabsorption are related to altered brush-border membrane expression/content of the type IIa Na-Picotransporter. Complex membrane retrieval/insertion mechanisms are involved in modulating transporter content in the brush-border membrane. In a tissue culture model (OK cells) expressing intrinsically the type IIa Na-Pi cotransporter, the cellular cascades involved in “physiological/pathophysiological” control of Pi reabsorption have been explored. As this cell model offers a “proximal tubular” environment, it is useful for characterization (in heterologous expression studies) of the cellular/molecular requirements for transport regulation. Finally, the oocyte expression system has permitted a thorough characterization of the transport characteristics and of structure/function relationships. Thus the cloning of the type IIa Na-Pi cotransporter (in 1993) provided the tools to study renal brush-border membrane Na-Pi cotransport function/regulation at the cellular/molecular level as well as at the organ level and led to an understanding of cellular mechanisms involved in control of proximal tubular Pi handling and, thus, of overall Pihomeostasis.

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

Cited by 434 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3