Affiliation:
1. Institute of Physiology, University of Zürich, Zürich, Switzerland
Abstract
Renal proximal tubular reabsorption of Pi is a key element in overall Pi homeostasis, and it involves a secondary active Pi transport mechanism. Among the molecularly identified sodium-phosphate (Na/Pi) cotransport systems a brush-border membrane type IIa Na-Pi cotransporter is the key player in proximal tubular Pi reabsorption. Physiological and pathophysiological alterations in renal Pi reabsorption are related to altered brush-border membrane expression/content of the type IIa Na-Picotransporter. Complex membrane retrieval/insertion mechanisms are involved in modulating transporter content in the brush-border membrane. In a tissue culture model (OK cells) expressing intrinsically the type IIa Na-Pi cotransporter, the cellular cascades involved in “physiological/pathophysiological” control of Pi reabsorption have been explored. As this cell model offers a “proximal tubular” environment, it is useful for characterization (in heterologous expression studies) of the cellular/molecular requirements for transport regulation. Finally, the oocyte expression system has permitted a thorough characterization of the transport characteristics and of structure/function relationships. Thus the cloning of the type IIa Na-Pi cotransporter (in 1993) provided the tools to study renal brush-border membrane Na-Pi cotransport function/regulation at the cellular/molecular level as well as at the organ level and led to an understanding of cellular mechanisms involved in control of proximal tubular Pi handling and, thus, of overall Pihomeostasis.
Publisher
American Physiological Society
Subject
Physiology (medical),Molecular Biology,Physiology,General Medicine
Cited by
443 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献