Evidence for a protein regulator from rat liver which activates acetyl-CoA carboxylase

Author:

Quayle K A1,Denton R M2,Brownsey R W1

Affiliation:

1. Department of Biochemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3

2. Deparment of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 lTD, U.K.

Abstract

1. A regulator of acetyl-CoA carboxylase has been identified in high-speed supernatant fractions from rat liver. The regulator was found to activate highly purified acetyl-CoA carboxylase 2-3-fold at physiological citrate concentrations (0.1-0.5 mM). The effects of the regulator on acetyl-CoA carboxylase activity were dose-dependent, and half-maximal activation occurred in 7-8 min at 30 degrees C. 2. The acetyl-CoA carboxylase regulator was non-dialysable and was inactivated by heating or by exposure to carboxypeptidase. The regulator was enriched from rat liver cytosol by first removing the endogenous acetyl-CoA carboxylase and then using a combination of purification steps, including (NH4)2SO4 precipitation, ion-exchange chromatography and size-exclusion chromatography. The regulator activity appeared to be a protein with a molecular mass of approx. 75 kDa, which could be eluted from mono-Q with approx. 0.35 M KCl as a single peak of activity. 3. Studies of the effects of the regulator on phosphorylation or subunit size of acetyl-CoA carboxylase indicated that the changes in enzyme activity are most unlikely to be explained by dephosphorylation or by proteolytic cleavage. 4. The regulator co-migrates with acetyl-CoA carboxylase through several purification steps, including ion-exchange chromatography and precipitation with (NH4)2SO4; however, the proteins may be separated by Sepharose-avidin chromatography, and the association between the proteins is also disrupted by addition of avidin in solution. Furthermore, the binding of the regulator itself to DEAE-cellulose is altered by the presence of acetyl-CoA carboxylase. Taken together, these observations suggest that the effects of the regulator on acetyl-CoA carboxylase may be explained by direct protein-protein interaction in vitro.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3