Regulation of acetyl-CoA carboxylase

Author:

Brownsey R.W.1,Boone A.N.1,Elliott J.E.1,Kulpa J.E.1,Lee W.M.1

Affiliation:

1. Department of Biochemistry and Molecular Biology and The Diabetes Research Group of the Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3

Abstract

Acetyl-CoA carboxylase (ACC) catalyses the formation of malonyl-CoA, an essential substrate for fatty acid synthesis in lipogenic tissues and a key regulatory molecule in muscle, brain and other tissues. ACC contributes importantly to the overall control of energy metabolism and has provided an important model to explore mechanisms of enzyme control and hormone action. Mammalian ACCs are multifunctional dimeric proteins (530–560 kDa) with the potential to further polymerize and engage in multiprotein complexes. The enzymatic properties of ACC are complex, especially considering the two active sites, essential catalytic biotin, the three-substrate reaction and effects of allosteric ligands. The expression of the two major isoforms and splice variants of mammalian ACC is tissue-specific and responsive to hormones and nutritional status. Key regulatory elements and cognate transcription factors are still being defined. ACC specific activity is also rapidly modulated, being increased in response to insulin and decreased following exposure of cells to catabolic hormones or environmental stress. The acute control of ACC activity is the product of integrated changes in substrate supply, allosteric ligands, the phosphorylation of multiple serine residues and interactions with other proteins. This review traces the path and implications of studies initiated with Dick Denton in Bristol in the late 1970s, through to current proteomic and other approaches that have been consistently challenging and immensely rewarding.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 329 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3