Affiliation:
1. Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
2. Departments of Pathology, Molecular and Cellular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
Abstract
Malonyl–coenzyme A (malonyl-CoA), generated by acetyl-CoA carboxylases ACC1 and ACC2, is a key metabolite in the regulation of energy homeostasis. Here, we show that
Acc2
−/−
mutant mice have a normal life span, a higher fatty acid oxidation rate, and lower amounts of fat. In comparison to the wild type, Acc2-deficient mice had 10- and 30-fold lower levels of malonyl-CoA in heart and muscle, respectively. The fatty acid oxidation rate in the soleus muscle of the
Acc2
−/−
mice was 30% higher than that of wild-type mice and was not affected by addition of insulin; however, addition of insulin to the wild-type muscle reduced fatty acid oxidation by 45%. The mutant mice accumulated 50% less fat in their adipose tissue than did wild-type mice. These results raise the possibility that pharmacological manipulation of ACC2 may lead to loss of body fat in the context of normal caloric intake.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
778 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献