Mislocalization and inhibition of acetyl-CoA carboxylase 1 by a synthetic small molecule

Author:

Jung Dongju1,Abu-Elheiga Lutfi2,Ayuzawa Rie1,Gu Ziwei2,Shirakawa Takashi3,Fujiki Yukio4,Nakatsuji Norio1,Wakil Salih J.2,Uesugi Motonari13

Affiliation:

1. Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan

2. Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, U.S.A.

3. Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan

4. Department of Biology, Kyushu University Faculty of Science, Fukuoka 812-81, Japan

Abstract

Chromeceptin is a synthetic small molecule that inhibits insulin-induced adipogenesis of 3T3-L1 cells and impairs the function of IGF2 (insulin-like growth factor 2). The molecular target of this benzochromene derivative is MFP-2 (multifunctional protein 2). The interaction between chromeceptin and MFP-2 activates STAT6 (signal transducer and activator of transcription 6), which subsequently induces IGF inhibitory genes. It was not previously known how the binding of chromeceptin with MFP-2 blocks adipogenesis and activates STAT6. The results of the present study show that the chromeceptin–MFP-2 complex binds to and inhibits ACC1 (acetyl-CoA carboxylase 1), an enzyme important for the de novo synthesis of malonyl-CoA and fatty acids. The formation of this ternary complex removes ACC1 from the cytosol and sequesters it in peroxisomes under the guidance of Pex5p (peroxisomal-targeting signal type 1 receptor). As a result, chromeceptin impairs fatty acid synthesis from acetate where ACC1 is a rate-limiting enzyme. Overexpression of malonyl-CoA decarboxylase or siRNA (small interfering RNA) knockdown of ACC1 results in STAT6 activation, suggesting a role for malonyl-CoA in STAT6 signalling. The molecular mechanism of chromeceptin may provide a new pharmacological approach to selective inhibition of ACC1 for biological studies and pharmaceutical development.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3