Inhibition of insulin-degrading enzyme in human neurons promotes amyloid-β deposition

Author:

Rowland Helen A.1,Moxon Samuel R.1,Corbett Nicola J.1,Hanson Kelsey1,Fisher Kate1,Kellett Katherine A.B.1,Hooper Nigel M.12ORCID

Affiliation:

1. 1Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, Manchester, U.K.

2. 2Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, U.K.

Abstract

Abstract Alzheimer’s disease (AD) is characterised by the aggregation and deposition of amyloid-β (Aβ) peptides in the human brain. In age-related late-onset AD, deficient degradation and clearance, rather than enhanced production, of Aβ contributes to disease pathology. In the present study, we assessed the contribution of the two key Aβ-degrading zinc metalloproteases, insulin-degrading enzyme (IDE) and neprilysin (NEP), to Aβ degradation in human induced pluripotent stem cell (iPSC)-derived cortical neurons. Using an Aβ fluorescence polarisation assay, inhibition of IDE but not of NEP, blocked the degradation of Aβ by human neurons. When the neurons were grown in a 3D extracellular matrix to visualise Aβ deposition, inhibition of IDE but not NEP, increased the number of Aβ deposits. The resulting Aβ deposits were stained with the conformation-dependent, anti-amyloid antibodies A11 and OC that recognise Aβ aggregates in the human AD brain. Inhibition of the Aβ-forming β-secretase prevented the formation of the IDE-inhibited Aβ deposits. These data indicate that inhibition of IDE in live human neurons grown in a 3D matrix increased the deposition of Aβ derived from the proteolytic cleavage of the amyloid precursor protein. This work has implications for strategies aimed at enhancing IDE activity to promote Aβ degradation in AD.

Funder

UKRI | Medical Research Council

UKRI | Biotechnology and Biological Sciences Research Council

Dr Donald Dean Fund for Dementia Research

University of Manchester

Publisher

Portland Press Ltd.

Subject

Cellular and Molecular Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3