Revolutionizing enzyme engineering through artificial intelligence and machine learning

Author:

Singh Nitu1,Malik Sunny1,Gupta Anvita2,Srivastava Kinshuk Raj1ORCID

Affiliation:

1. Laboratory of Biocatalysis and Enzyme Engineering, Regional Centre for Biotechnology, Faridabad, Haryana 121001, India

2. AINovo Biotech Inc, 725 W Elliot Rd, Suite 112, Gilbert, AZ 85233, U.S.A.

Abstract

The combinatorial space of an enzyme sequence has astronomical possibilities and exploring it with contemporary experimental techniques is arduous and often ineffective. Multi-target objectives such as concomitantly achieving improved selectivity, solubility and activity of an enzyme have narrow plausibility under approaches of restricted mutagenesis and combinatorial search. Traditional enzyme engineering approaches have a limited scope for complex optimization due to the requirement of a priori knowledge or experimental burden of screening huge protein libraries. The recent surge in high-throughput experimental methods including Next Generation Sequencing and automated screening has flooded the field of molecular biology with big-data, which requires us to re-think our concurrent approaches towards enzyme engineering. Artificial Intelligence (AI) and Machine Learning (ML) have great potential to revolutionize smart enzyme engineering without the explicit need for a complete understanding of the underlying molecular system. Here, we portray the role and position of AI techniques in the field of enzyme engineering along with their scope and limitations. In addition, we explain how the traditional approaches of directed evolution and rational design can be extended through AI tools. Recent successful examples of AI-assisted enzyme engineering projects and their deviation from traditional approaches are highlighted. A comprehensive picture of current challenges and future avenues for AI in enzyme engineering are also discussed.

Publisher

Portland Press Ltd.

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3