Data‐Driven Protein Engineering for Improving Catalytic Activity and Selectivity

Author:

Ao Yu‐Fei123ORCID,Dörr Mark1ORCID,Menke Marian J.1ORCID,Born Stefan4ORCID,Heuson Egon5ORCID,Bornscheuer Uwe T.1ORCID

Affiliation:

1. Department of Biotechnology and Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany

2. Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China

3. University of Chinese Academy of Sciences Yuquan Road 19(A) Beijing 100049 China

4. Technische Universität Berlin, Chair of Bioprocess Engineering Ackerstraße 76 13355 Berlin Germany

5. Univ. Lille CNRS Centrale Lille Univ. Artois, UMR 8181 UCCS Unité de Catalyse et Chimie du Solide 59000 Lille France

Abstract

AbstractProtein engineering is essential for altering the substrate scope, catalytic activity and selectivity of enzymes for applications in biocatalysis. However, traditional approaches, such as directed evolution and rational design, encounter the challenge in dealing with the experimental screening process of a large protein mutation space. Machine learning methods allow the approximation of protein fitness landscapes and the identification of catalytic patterns using limited experimental data, thus providing a new avenue to guide protein engineering campaigns. In this concept article, we review machine learning models that have been developed to assess enzyme‐substrate‐catalysis performance relationships aiming to improve enzymes through data‐driven protein engineering. Furthermore, we prospect the future development of this field to provide additional strategies and tools for achieving desired activities and selectivities.

Funder

Deutsche Forschungsgemeinschaft

National Natural Science Foundation of China

Publisher

Wiley

Subject

Organic Chemistry,Molecular Biology,Molecular Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3