Affiliation:
1. School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, U.K.
2. School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, U.K.
Abstract
Lithium (Li+) is the mood stabilizer most frequently used in the treatment of bipolar mood disorder; however, its therapeutic mechanism is unknown. In the 1980s, Berridge and colleagues proposed that Li+ treatment acts via inhibition of IMPase (inositol monophosphatase) to deplete the cellular concentration of myo-inositol. Inositol depletion is also seen with the alternative mood stabilizers VPA (valproic acid) and CBZ (carbamazepine), suggesting a common therapeutic action. All three drugs cause changes in neuronal cell morphology and cell chemotaxis; however, it is unclear how reduced cellular inositol modulates these changes in cell behaviour. It is often assumed that reduced inositol suppresses Ins(1,4,5)P3, a major intracellular signal molecule, but there are other important phosphoinostide-based signal molecules in the cell. In the present paper, we discuss evidence that Li+ has a substantial effect on PtdIns(3,4,5)P3, an important signal molecule within the nervous system. As seen for Ins(1,4,5)P3 signalling, suppression of PtdIns(3,4,5)P3 signalling also occurs via an inositol-depletion mechanism. This has implications for the cellular mechanisms controlling phosphoinositide signalling, and offers insight into the genetics underlying risk of bipolar mood disorder.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献