Dictyostelium discoideum: An Alternative Nonanimal Model for Developmental Toxicity Testing

Author:

Baines Robert P1,Wolton Kathryn2ORCID,Thompson Christopher R L1

Affiliation:

1. Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London WC1E 6BT, UK

2. Syngenta, Jealott’s Hill International Research Centre, Bracknell RG42 6EY, UK

Abstract

Abstract A critical aspect of toxicity evaluation is developmental and reproductive toxicity (DART) testing. Traditionally, DART testing has been conducted in vivo in mammalian model systems. New legislation aimed at reducing animal use and the prohibitive costs associated with DART testing, together with a need to understand the genetic pathways underlying developmental toxicity means there is a growing demand for alternative model systems for toxicity evaluation. Here we explore the potential of the eukaryotic social amoeba Dictyostelium discoideum, which is already widely used as a simple model system for cell and developmental biology, as a potential nonanimal model for DART testing. We developed assays for high-throughput screening of toxicity during D. discoideum growth and development. This allowed the toxicity of a broad range of test compounds to be characterized, which revealed that D. discoideum can broadly predict mammalian toxicity. In addition, we show that this system can be used to perform functional genomic screens to compare the molecular modes of action of different compounds. For example, genome-wide screens for mutations that affect lithium and valproic acid toxicity allowed common and unique biological targets and molecular processes mediating their toxicity to be identified. These studies illustrate that D. discoideum could represent a predictive nonanimal model for DART testing due to its amenability to high-throughput approaches and molecular genetic tractability.

Funder

Wellcome Trust Investigator Award

Wellcome Trust Biomedical Resource

Wellcome Trust Institutional Support

Syngenta

Publisher

Oxford University Press (OUP)

Subject

Toxicology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3