Phenotypic analysis of trypanothione synthetase knockdown in the African trypanosome

Author:

Ariyanayagam Mark R.1,Oza Sandra L.1,Guther Maria Lucia S.1,Fairlamb Alan H.1

Affiliation:

1. Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K.

Abstract

Trypanothione plays a pivotal role in defence against chemical and oxidant stress, thiol redox homoeostasis, ribonucleotide metabolism and drug resistance in parasitic kinetoplastids. In Trypanosoma brucei, trypanothione is synthesized from glutathione and spermidine by a single enzyme, TryS (trypanothione synthetase), with glutathionylspermidine as an intermediate. To examine the physiological roles of trypanothione, tetracycline-inducible RNA interference was used to reduce expression of TRYS. Following induction, TryS protein was reduced >10-fold and growth rate was reduced 2-fold, with concurrent 5–10-fold decreases in glutathionylspermidine and trypanothione and an up to 14-fold increase in free glutathione content. Polyamine levels were not significantly different from non-induced controls, and neither was the intracellular thiol redox potential, indicating that these factors are not responsible for the growth defect. Compensatory changes in other pathway enzymes were associated with prolonged suppression of TryS: an increase in trypanothione reductase and γ-glutamylcysteine synthetase, and a transient decrease in ornithine decarboxylase. Depleted trypanothione levels were associated with increases in sensitivity to arsenical, antimonial and nitro drugs, implicating trypanothione metabolism in their mode of action. Escape mutants arose after 2 weeks of induction, with all parameters, including growth, returning to normal. Selective inhibitors of TryS are required to fully validate this novel drug target.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference50 articles.

1. Statistical Annex;World Health Organization,2002

2. Target discovery and validation with special reference to trypanothione;Fairlamb,2003

3. Metabolism and functions of trypanothione in the Kinetoplastida;Fairlamb;Annu. Rev. Microbiol.,1992

4. Purification and characterization of trypanothione reductase from Crithidia fasciculata, a newly discovered member of the family of disulphide-containing flavoprotein reductases;Shames;Biochemistry,1986

5. Trypanothione dependent peroxide metabolism in Crithidia fasciculata and Trypanosoma brucei;Henderson;Mol. Biochem. Parasitol.,1987

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3