Biomechanical characterization of the periodontal ligament: Orthodontic tooth movement

Author:

Uhlir Richard1,Mayo Virginia2,Lin Pei Hua1,Chen Si3,Lee Yan-Ting4,Hershey Garland5,Lin Feng-Chang6,Ko Ching-Chang7

Affiliation:

1. Graduate Student, Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, NC.

2. Dental Student, Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, NC.

3. Visiting Scholar, Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, NC.

4. Research Assistant, Department of Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, NC.

5. Professor, Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, NC.

6. Assistant Professor, Department of Biostatistics, University of North Carolina, Chapel Hill, NC.

7. Distinguished Professor, Department of Orthodontics, School of Dentistry, University of North Carolina, Chapel Hill, NC, and Department of Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, NC.

Abstract

ABSTRACT Objective: To quantify the biomechanical properties of the bovine periodontal ligament (PDL) in postmortem sections and to apply these properties to study orthodontic tooth intrusion using finite element analysis (FEA). We hypothesized that PDL's property inherited heterogeneous (anatomical dependency) and nonlinear stress-strain behavior that could aid FEA to delineate force vectors with various rectangular archwires. Materials and Methods: A dynamic mechanical analyzer was used to quantify the stress-strain behavior of bovine PDL. Uniaxial tension tests using three force levels (0.5, 1, and 3 N) and samples from two anatomical locations (circumferential and longitudinal) were performed to calculate modulus. The Mooney-Rivlin hyperelastic (MRH) model was applied to the experimental data and used in an FEA of orthodontic intrusion rebounded via a 0.45-mm step bend with three archwire configurations of two materials (stainless steel and TMA). Results: Force levels and anatomical location were statistically significant in their effects on modulus (P < .05). The apical part had a greater stiffness than did the middle part. The MRH model was found to approximate the experimental data well (r = 0.99), and it demonstrated a reasonable stress-strain outcome within the PDL and bone for FEA intrusion simulation. The force acting on the tooth increased five times from the 0.016 × 0.022-inch TMA to the 0.019 × 0.025-inch stainless steel. Conclusions: The PDL is a nonhomogeneous tissue in which the modulus changed in relation to location. PDL nonlinear constitutive model estimated quantitative force vectors for the first time to compare intrusive tooth movement in 3-D space in response to various rectangular archwires.

Publisher

The Angle Orthodontist (EH Angle Education & Research Foundation)

Subject

Orthodontics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3