Finite Element Study of Periodontal Ligament Properties for a Maxillary Central Incisor and a Mandibular Second Molar Under Percussion Conditions

Author:

Mapar Aboozar,Taheri-Nassaj Nasrin,Shen Jie,Komari Omid,Sheets Cherilyn G.,Earthman James C.ORCID

Abstract

Abstract Purpose The quantitative percussion diagnostics (QPD) response of a mandibular second molar and a maxillary central incisor including their supporting ligament/bone structure was simulated using dynamic 3D finite element analysis (FEA). The focus of the work was on the role of the periodontal ligament (PDL) which acts as a damper in the dental structure and dissipates occlusal forces transmitted from the tooth surface to the surrounding bone. Methods Several FEA models were developed to examine the effects of mechanical characteristics that have been reported for the PDL. Specifically, the effects of changing the PDL’s quasi-static elastic modulus and Rayleigh damping properties were predicted. Results The present FEA simulations indicate that the PDL can significantly reduce forces for both the incisor and the molar compared to when there is no PDL (i.e. ankylosed tooth) as long as the quasi-static elastic modulus of the PDL is among the lowest reported (~ 0.1 MPa). In addition, the FEA simulations for both the incisor and molar with this lower value of the PDL quasi-static elastic modulus are also in reasonably good agreement with experimental percussion data. A simple approximation for partitioning Rayleigh damping properties between the hard and soft tissues was also found to provide reasonable values of overall damping that are consistent with experimental data. Conclusion The overall findings indicate that using a quasi-static elastic modulus of approximately 0.1 MPa for the PDL in combination with Rayleigh damping gives realistic predictions of the mechanical response of a tooth under QPD loading conditions.

Funder

perimetrics, inc.

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3