2019 Ridgecrest Earthquake Reveals Areas of Los Angeles That Amplify Shaking of High-Rises

Author:

Kohler Monica D.1,Filippitzis Filippos1,Heaton Thomas1,Clayton Robert W.2,Guy Richard2,Bunn Julian3,Chandy K. Mani4

Affiliation:

1. Division of Engineering and Applied Science, Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, California, U.S.A.

2. Division of Geological and Planetary Sciences, Seismological Laboratory, California Institute of Technology, Pasadena, California, U.S.A.

3. Division of Physics, Math and Astronomy, California Institute of Technology, Pasadena, California, U.S.A.

4. Division of Engineering and Applied Science, Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California, U.S.A.

Abstract

Abstract The populace of Los Angeles, California, was startled by shaking from the M 7.1 earthquake that struck the city of Ridgecrest located 200 km to the north on 6 July 2019. Although the earthquake did not cause damage in Los Angeles, the experience in high-rise buildings was frightening in contrast to the shaking felt in short buildings. Observations from 560 ground-level accelerometers reveal large variations in shaking in the Los Angeles basin that occurred for more than 2 min. The observations come from the spatially dense Community Seismic Network (CSN), combined with the sparser Southern California Seismic Network and California Strong Motion Instrumentation Program networks. Site amplification factors for periods of 1, 3, 6, and 8 s are computed as the ratio of each station’s response spectral values combined for the two horizontal directions, relative to the average of three bedrock sites. Spatially coherent behavior in site amplification emerges for periods ≥3  s, and the maximum calculated site amplifications are the largest, by factors of 7, 10, and 8, respectively, for 3, 6, and 8 s periods. The dense CSN observations show that the long-period amplification is clearly, but only partially, correlated with the depth to basement. Sites with the largest amplifications for the long periods (≥3  s) are not close to the deepest portion of the basin. At 6 and 8 s periods, the maximum amplifications occur in the western part of the Los Angeles basin and in the south-central San Fernando Valley sedimentary basin. The observations suggest that the excitation of a hypothetical high-rise located in an area characterized by the largest site amplifications could be four times larger than in a downtown Los Angeles location.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3