Time-varying damping ratios and velocities in a high-rise during earthquakes and ambient vibrations from coda wave interferometry

Author:

Prieto Germán A1ORCID,Kohler Monica D2

Affiliation:

1. Departamento de Geociencias, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia

2. Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA, USA

Abstract

Coda wave interferometry is applied to data from Community Seismic Network MEMS accelerometers permanently installed on nearly every floor of a 52-story steel moment-and-brace frame building in downtown Los Angeles. Wavefield data from the 2019 M7.1 Ridgecrest, California earthquake sequence are used to obtain impulse response functions, and time-varying damping ratios and shear-wave velocities are computed from them. The coda waves are used because of their increased sensitivity to changes in the building’s properties, and the approach is generalized to show that a building’s nonlinear response can be monitored through time-varying measurements of representative pseudo-linear systems in the time domain. The building was not damaged, but temporary nonlinear behavior observed during the strong motions provides a unique opportunity to test this method’s ability to map time-varying properties. Reference damping parameters and velocities are obtained from a month-long period during which no significant seismic activity had occurred. Damping ratios measured over narrow frequency bands increase by up to a factor of 4 over short time durations spanning the main shock, as well as M > 4.5 aftershocks and a foreshock. The largest damping ratio increases occur for the highest frequencies, and the increase is attributed to friction associated with structural and non-structural surface discontinuities which experience relative motion and impact during shaking, resulting in energy loss. Shear-wave velocities in the building’s east–west and north–south directions are found by applying a waveform stretching method to the direct and coda waves. The broadband velocities are reduced by as much as 10% during building shaking, and their restoration to pre-earthquake levels is found to be a function of shaking amplitudes. Until recently, these techniques had been limited by temporal and spatial sparsity of measurements, but in this study, variations of the impulse response functions are resolved over time scales of tens of seconds and on a floor-by-floor spatial scale.

Funder

Computers & Structures, Inc.,

Conrad N. Hilton Foundation

Publisher

SAGE Publications

Reference74 articles.

1. Blind Modal Identification of Non-Classically Damped Systems from Free or Ambient Vibration Records

2. Scaling law of seismic spectrum

3. Structural health building response induced by earthquakes: Material softening and recovery

4. First Mode Damping Ratios for Buildings

5. Bernal DP, Mozaffari S, Kwan K, Döhler M (2012) Damping identification in buildings from earthquake records. SMIP seminar on utilization of strong motion data proceedings. Available at: https://www.conservation.ca.gov/cgs/pages/program-smi/seminar/smip12_toc.aspx (March 2024).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3