Shake to the Beat: Exploring the Seismic Signals and Stadium Response of Concerts and Music Fans

Author:

Tepp Gabrielle1ORCID,Stubailo Igor1ORCID,Kohler Monica2ORCID,Guy Richard3,Bozorgnia Yousef3

Affiliation:

1. 1Seismological Laboratory, Caltech, Pasadena, California, U.S.A.

2. 2Department of Mechanical and Civil Engineering, Caltech, Pasadena, California, U.S.A.

3. 3Department of Civil and Environmental Engineering, UCLA, Los Angeles, California, U.S.A.

Abstract

Abstract Large music festivals and stadium concerts are known to produce unique vibration signals that resemble harmonic tremor, particularly at frequencies around 1–10 Hz. This study investigates the seismic signals of a Taylor Swift concert performed on 5 August 2023 (UTC) as part of a series at SoFi Stadium in Inglewood, California, with an audience of ∼70,000. Signals were recorded on regional seismic network stations located within ∼9 km of the stadium, as well as on strong-motion sensors placed near and inside the stadium prior to the concert series. We automatically identified the seismic signals from spectrograms using a Hough transform approach and characterized their start times, durations, frequency content, particle motions, radiated energy, and equivalent magnitudes. These characteristics allowed us to associate the signals with individual songs and explore the nature of the seismic source. The signal frequencies matched the song beat rates well, whereas the signal and song durations were less similar. Radiated energy was determined to be a more physically relevant measure of strength than magnitude, given the tremor-like nature of the signals. The structural response of the stadium showed nearly equal shaking intensities in the vertical and horizontal directions at frequencies that match the seismic signals recorded outside the stadium. In addition, we conducted a brief experiment to further evaluate whether the harmonic tremor signals could be generated by the speaker system and instruments, audience motions, or something else. All evidence considered, we interpret the signal source as primarily crowd motion in response to the music. The particle motions of the strongest harmonics are consistent with Rayleigh waves influenced by scattered body waves and likely reflect how the crowd is moving. Results from three other musical performances at SoFi in summer 2023 were similar, although differences in the signals may relate to the musical genre and variations in audience motions.

Publisher

Seismological Society of America (SSA)

Reference43 articles.

1. Deep volcanic tremor and magma ascent mechanism under Kilauea, Hawaii;Aki;J. Geophys. Res.,1981

2. Swell-triggered seismicity at the near-front damage zone of the Ross Ice Shelf;Aster;Seismol. Res. Lett.,2021

3. Vibrations in neighborhood buildings due to rock concerts in stadiums;Bertero;J. Struct. Eng.,2013

4. BGS seismic monitoring and information Service;Browitt,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3