Affiliation:
1. 1School of Geography, Environment and Earth Sciences (SGEES), Victoria University of Wellington, Wellington, New Zealand
2. 2GNS Science, Lower Hutt, New Zealand
Abstract
Abstract
This study evaluates EQTransformer, a deep learning model, for earthquake detection and phase picking using seismic data from the Southern Alps, New Zealand. Using a robust, independent dataset containing more than 85,000 manual picks from 13 stations spanning almost nine years, we assess EQTransformer’s performance and limitations in a practical application scenario. We investigate key parameters such as overlap and probability threshold and their influences on detection consistency and false positives, respectively. EQTransformer’s probability outputs show a limited correlation with pick accuracy, emphasizing the need for careful interpretation. Our analysis of illustrative signals from three seismic networks highlights challenges of consistently picking first arrivals when reflected or refracted phases are present. We find that an overlap length of 55 s balances detection consistency and computational efficiency, and that a probability threshold of 0.1 balances detection rate and false positives. Our study thus offers insights into EQTransformer’s capabilities and limitations, highlighting the importance of parameter selection for optimal results.
Publisher
Seismological Society of America (SSA)
Subject
General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献