Making Phase-Picking Neural Networks More Consistent and Interpretable

Author:

Park Yongsoo1ORCID,Delbridge Brent G.1ORCID,Shelly David R.2ORCID

Affiliation:

1. 1National Security Earth Science, Los Alamos National Laboratory, Los Alamos, New Mexico, U.S.A.

2. 2U.S. Geological Survey, Geologic Hazards Science Center, Golden, Colorado, U.S.A.

Abstract

Abstract Improving the interpretability of phase-picking neural networks remains an important task to facilitate their deployment to routine, real-time seismic monitoring. The popular phase-picking neural networks published in the literature lack interpretability because their output prediction scores do not necessarily correspond with the reliability of phase picks and can even be highly inconsistent depending on how we window the waveform data. Here, we show that systematically shifting the waveforms during training and using an antialiasing filter within the neural network architecture can substantially improve the consistency of the output prediction scores and can even make them scale with the signal-to-noise ratios of the waveforms. We demonstrate the improvements by applying these approaches to a commonly used phase-picking neural network architecture and using waveform data from the 2019 Ridgecrest earthquake sequence.

Publisher

Seismological Society of America (SSA)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3