Ground-Motion Model for Crustal Events in Italy by Applying the Multisource Geographically Weighted Regression (MS-GWR) Method

Author:

Lanzano Giovanni1ORCID,Sgobba Sara1ORCID,Caramenti Luca2ORCID,Menafoglio Alessandra2ORCID

Affiliation:

1. Istituto Nazionale di Geofisica e Vulcanologia, Milan, Italy

2. MOX, Department of Mathematics, Politecnico di Milano, Milan, Italy

Abstract

ABSTRACT In this article, we implement a new approach to calibrate ground-motion models (GMMs) characterized by spatially varying coefficients, using the calibration dataset of an existing GMM for crustal events in Italy. The model is developed in the methodological framework of the multisource geographically weighted regression (MS-GWR, Caramenti et al., 2020), which extends the theory of multiple linear regression to the case with model coefficients that are spatially varying, thus allowing for capturing the multiple sources of nonstationarity in ground motion related to event and station locations. In this way, we reach the aim of regionalizing the ground motion in Italy by specializing the model in a nonergodic framework. Such an attempt at regionalization also addresses the purpose of capturing the regional effects in the modeling, which is needed for the Italian country, where ground-motion properties vary significantly across space. Because the proposed model relies on the italian GMM (ITA18) (Lanzano et al., 2019) dataset and functional form, it could be considered the ITA18 nonstationary version, thus allowing one to predict peak ground acceleration and velocity, as well as 36 ordinates of the 5%-damped acceleration response spectra in the period interval T=0.01–10  s. The resulting MS-GWR model shows an improved ability to predict the ground motion locally, compared with stationary ITA18, leading to a significant reduction of the total variability at all periods of about 15%–20%. The article also provides scenario-dependent uncertainties associated with the median predictions to be used as a part of the epistemic uncertainty in the context of probabilistic seismic hazard analyses. Results show that the approach is promising for improving the model predictions, especially on densely sampled areas, although further studies are necessary to resolve the observed trade-off inherent to site and path effects, which limits their physical interpretation.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3