Peculiar characteristics of ground motions in Southern Italy: Insights from global and regional ground motion models

Author:

Regina Gianluca1,Zimmaro Paolo23,Taroni Matteo4,Akinci Aybige4

Affiliation:

1. Department of Civil Engineering, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, Italy

2. Department of Environmental Engineering, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, Italy

3. Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA

4. Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy

Abstract

We investigate peculiar characteristics of ground motions in Southern Italy (e.g. apparent fast anelastic attenuation and trends of event terms at different periods) using a comprehensive dataset of earthquake recordings between 1969 and 2020. By doing so, we gained insights into the relative performance of eight selected region-specific, global, and global with regional adjustment ground motion models (GMMs). Our analysis is performed using a preliminary dataset (i.e. including all ground motions recorded in the area for the selected analysis period) and an independent dataset (i.e. comprising data not used to develop the models). We analyze total residuals, event terms, within-even residuals, and residuals standardized by model standard deviations (i.e. epsilon). The latter is performed to obtain a robust comparison of GMMs with different standard deviation types and levels. These approaches are employed to ground motion characterization studies for the first time in this region. Our results show that in Southern Italy, there is an apparent anelastic attenuation of the ground motion faster than in other seismic districts. Overall, regional models capture this feature better than global models. Regional adjustments to global models better capture the observed anelastic attenuation at large distances. Using the standardized residuals analysis, we observe that all selected GMMs systematically underestimate the observed ground motion for relatively high ground motion levels and its variability at any intensity levels in the study region. These outcomes may help improving future ground motion models and related engineering applications involving such models in performance-based frameworks.

Funder

Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3