Regionalized Ground-Motion Models for Subduction Earthquakes Based on the NGA-SUB Database

Author:

Abrahamson Norman,Gülerce Zeynep

Abstract

A set of global and region-specific ground-motion models (GMMs) for subduction zone earthquakes is developed based on the database compiled by the Pacific Earthquake Engineering Research Center (PEER) Next Generation Attenuation - Subduction (NGA-SUB) project. The subset of the NGA-SUB database used to develop the GMMs includes 3914 recordings from 113 subduction interface earthquakes with magnitudes varying between 5 and 9.2 and 4850 recordings from 89 intraslab events with magnitudes varying between 5 and 7.8. Recordings in the back-arc region are excluded, except for the Cascadia region. The functional form of the model accommodates the differences in the magnitude, distance, and depth scaling for interface and intraslab earthquakes. The magnitude scaling and geometrical spreading terms of the global model are used for all regions, with the exception of the Taiwan region which has a region-specific geometrical spreading scaling. Region-specific terms are included for the large distance (linear R) scaling, VS30 scaling, Z2.5 scaling, and the constant term. The nonlinear site amplification factors used in Abrahamson et al. (2016) subduction GMM are adopted. The between-event standard deviation piece of the aleatory variability model is region and distance independent; whereas, the within-event standard deviations are both region and distance dependent. Region-specific GMMs are developed for seven regions: Alaska, Cascadia, Central America, Japan, New Zealand, South America, and Taiwan. These region-specific GMMs are judged to be applicable to sites in the fore-arc region at distances up to 500 km, magnitudes of 5.0 to 9.5, and periods from 0 to 10 sec. For the Cascadia region, the region-specific model is applicable to distances of 800 km including the back-arc region. For the sites that are not in one of the seven regions, the global GMM combined with the epistemic uncertainty computed from the range of the regional GMMs should be used.

Publisher

Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3