Physics-based parametrization of a FAS nonergodic ground motion model for Central Italy

Author:

Sgobba SaraORCID,Lanzano Giovanni,Colavitti Leonardo,Morasca Paola,D’Amico Maria Clara,Spallarossa Daniele

Abstract

AbstractWe propose a new fully nonergodic ground motion model for Central Italy, which is one of the most sampled areas in the world after the occurrence of the last seismic sequences of 2009 and 2016–2017. The model predicts 69 ordinates of the Fourier Amplitude Spectrum in the magnitude range 3.2–6.5 and is constrained on a dense set of seismological and geophysical parameters (i.e. stress-drop$$\Delta \sigma$$Δσ, shear-wave velocity in the uppermost 30 m,VS,30and high-frequency attenuation parameter at source$${\kappa }_{source}$$κsourceand site$${\kappa }_{0}$$κ0) made available from a non-parametric generalized inversion technique (GIT). The aim of this work is to capture the underlying physics of ground motion related to different source energy levels, as well as to the crustal and geological structure of the region, thus providing less uncertain predictions. Calibration is performed using a stepwise regression approach which has the advantage of taking a more complex functional form (advancedmodel) when all physical parameters are known while returning a simpler form (basemodel) when physical data are missing. As a result, the advanced model reproduces the reference rock motion of the region in case the site additional proxies are set to their average values (VS,30 = 1100 m/s,$${\kappa }_{0}$$κ0=15 ms). We show that the inclusion of the set of physically-based explanatory variables in the regression has a beneficial effect in constraining the uncertainty, leading to a reduction of the high-frequency variability of about 70% on the between-event and 35% on the site-to-site. This reduction can be viewed as the result of the combination of a more effective physical description through the incorporation of the additional proxies and a calibration embedded in a completely nonergodic framework.

Funder

Dipartimento della Protezione Civile, Presidenza del Consiglio dei Ministri

Istituto Nazionale di Geofisica e Vulcanologia

Publisher

Springer Science and Business Media LLC

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3