Source and Attenuation Properties of the 2012 Moe, Southeastern Australia, Earthquake Sequence

Author:

Hoult Ryan1,Allen Trevor2,Borleis Elodie3,Peck Wayne3,Amirsardari Anita4

Affiliation:

1. Department of Infrastructure Engineering, University of Melbourne, Parkville, Victoria, Australia

2. Geoscience Australia, Canberra, Australian Capital Territory, Australia

3. Seismology Research Centre, Richmond, Victoria, Australia

4. School of Engineering, Swinburne University of Technology, Hawthorn, Victoria, Australia

Abstract

Abstract The 19 June 2012 local magnitude ML 5.4 (Mw 5.1) Moe earthquake, which occurred within the Australian stable continental region, was the largest seismic event for the state of Victoria, for more than 30 yr. Seismic networks in the southeast Australian region yielded many high-quality recordings of the moderate-magnitude earthquake mainshock and its largest aftershock (ML 4.4 and Mw 4.3) at a range of distances from the epicenter. The source and attenuation characteristics of the earthquake sequence are analyzed. Almost 15,000 felt reports were received following the mainshock, and its ground motions tripped a number of coal-fired power generators in the region amounting to the loss of, approximately, 1955 MW of generation capacity. The attenuation of macroseismic intensities is shown to mimic the attenuation shape of eastern North America (ENA) models but requires an interevent bias to reduce predicted intensities. Furthermore, instrumental ground-motion recordings are compared to ground-motion models (GMMs) considered applicable for the southeastern Australian (SEA) region. Some GMMs developed for ENA and SEA provide reasonable estimates of the recorded ground motions of spectral acceleration within epicentral distances of, approximately, 100 km. The mean Next Generation Attenuation-East GMM, recently developed for stable ENA, performs relatively poorly for the 2012 Moe earthquake sequence, particularly, for short-period accelerations. These observations will help inform future seismic hazard assessments for eastern Australia.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3