Modulation of Seismic Radiation by Fault-Scale Geology of the 2016 Mw 6.0 Shallow Petermann Ranges Earthquake (PRE) in Central Australia

Author:

Mo Tao12ORCID,Attanayake Januka1ORCID

Affiliation:

1. 1School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Parkville, Australia

2. 2Now at, Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, China

Abstract

ABSTRACTUnderstanding the modulatory influence of fault-scale geology on seismic behavior of earthquake faults is central to determining the physics of faulting and seismic hazard analysis. Although laboratory experiments predict that seismic parameters can be modulated by fault-scale geology, there is scant empirical evidence of this process at field scale due largely to a lack of shallow earthquakes of which causative faults can be mapped to known bedrock structure. The 20 May 2016 Mw 6 Petermann Ranges earthquake (PRE) is the best-recorded continental event in Australia to date, and it is an excellent candidate to investigate the possible link between seismic parameters and fault-scale geology as its causative fault has previously been linked to known bedrock structure using distributions of aftershocks, surface observations, and geophysical mapping. In this study, we analyze strain energy partitioning of PRE by determining seismic radiation efficiency (0.31) and apparent stress (0.34 MPa) together with previously estimated stress drop (2.2 MPa) and find that the combination of these macroseismic parameters deviates from that expected of a shallow immature fault in intraplate continental regions typically characterized by large recurrence intervals. It instead appears to have mimicked a mature fault, which we attribute to the characteristics of the causative fault confined to mechanically weaker, phyllosilicate-rich foliations of the bedrock that have anomalously lower fracture energy. Therefore, PRE rupture suggests the presence of a spectrum of shallow (<20 km) fault slip behavior modulated by fault-scale geology.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3