MALMI: An Automated Earthquake Detection and Location Workflow Based on Machine Learning and Waveform Migration

Author:

Shi Peidong1ORCID,Grigoli Francesco2ORCID,Lanza Federica1ORCID,Beroza Gregory C.3ORCID,Scarabello Luca1ORCID,Wiemer Stefan1ORCID

Affiliation:

1. 1Swiss Seismological Service, ETH-Zurich, Zurich, Switzerland

2. 2Department of Earth Sciences, University of Pisa, Pisa, Italy

3. 3Department of Geophysics, Stanford University, Stanford, California, U.S.A.

Abstract

Abstract Robust automatic event detection and location is central to real-time earthquake monitoring. With the increase of computing power and data availability, automated workflows that utilize machine learning (ML) techniques have become increasingly popular; however, ML-based classical workflows still face challenges when applied to the analysis of microseismic data. These seismic sequences are often characterized by short interevent times and/or low signal-to-noise ratio (SNR). Full waveform methods that do not rely on phase picking and association are suitable for processing such datasets, but are computationally costly and lack clear event identification criteria, which is not ideal for real-time processing. To leverage the advantages of both the methods, we propose a new workflow—MAchine Learning aided earthquake MIgration location (MALMI), which integrates ML and waveform migration to perform automated event detection and location. The new workflow uses a pretrained ML model to generate continuous phase probabilities that are then backprojected and stacked to locate seismic sources using migration. We applied the workflow to one month of continuous data collected in the Hengill geothermal area of Iceland to monitor induced earthquakes around two geothermal production sites. With a ML model (EQ-Transformer) pretrained using a global distribution of earthquakes, the proposed workflow automatically detects and locates 250 additional seismic events (accounting for 36% events in the obtained catalog) compared to a reference catalog generated using the SeisComP software. Most of the new events are microseismic events with a magnitude less than 0. Visual inspection of the waveforms of the newly detected events indicates that they are real seismic events of low SNR and are only reliably recorded by very few stations in the array. Further comparison with the conventional migration method based on short-term average over long-term average confirms that MALMI can produce much clearer stacked images with higher resolution and reliability, especially for events with low SNR. The workflow is freely available on GitHub, providing an automated tool for simultaneous event detection and location from continuous seismic data.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Reference44 articles.

1. Automatic phase pickers: Their present use and future prospects;Allen;Bull. Seismol. Soc. Am.,1982

2. ObsPy: A Python toolbox for seismology;Beyreuther;Seismol. Res. Lett.,2010

3. OR—Reykjavik energy [Dataset];Energy Reykjavik (Iceland);International Federation of Digital Seismograph Networks,2016

4. Automated microearthquake location using envelope stacking and robust global optimization;Gharti;Geophysics,2010

5. Automated seismic event location by waveform coherence analysis;Grigoli;Geophys. J. Int.,2014

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3