Automated microearthquake location using envelope stacking and robust global optimization

Author:

Gharti Hom Nath1,Oye Volker1,Roth Michael1,Kühn Daniela1

Affiliation:

1. NORSAR, Kjeller, Norway. .

Abstract

Most earthquake location methods require phase identification and arrival-time measurements. These methods are generally fast and efficient but not always applicable to microearthquake data with low signal-to-noise ratios because the phase identification might be very difficult. The migration-based source location methods, which do not require an explicit phase identification, are often more suitable for such noisy data. Whereas some existing migration-based methods are computationally intensive, others are limited to a certain type of data or make use of only a particular phase of the signal. We have developed a migration-based source location method especially applicable to data with relatively low signal-to-noise ratios. We projected seismograms onto the ray coordinate system for each potential source-receiver configuration and subsequently computed their envelopes. The envelopes were time shifted according to synthetic P- and S-wavearrival times (computed using an eikonal solver) and stacked for a predefined time window centered on the arrival time of the corresponding phase. This was done for each component and phase individually, and the squared sum of the stacks was defined as the objective function. We applied a robust global optimization routine called differential evolution to maximize the objective function and thereby locate the seismic event. Our source location method provides a complete algorithm with only a few control parameters, making it suitable for automatic processing. We applied this method to single and multicomponent data using P and/or S phases. We conducted controlled tests using synthetic seismograms contaminated with a minimum of 30% white noise. The synthetic data were computed for a complex and heterogeneous model of the Pyhäsalmi ore mine in Finland. We also successfully applied the method to real seismic data recorded with the in-mine seismic network of the Pyhäsalmi mine.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3