Differential responses of the growth hormone axis in two rat models of streptozotocin-induced insulinopenic diabetes

Author:

Kim E,Sohn S,Lee M,Jung J,Kineman R D,Park S

Abstract

The impact of streptozotocin (STZ)-induced, insulinopenic diabetes on the GH axis of rats and mice differs from study to study, where this variation may be related to the induction scheme, severity of the diabetes and/or the genetic background of the animal model used. In order to begin differentiate between these possibilities, we compared the effects of two different STZ induction schemes on the GH axis of male Sprague–Dawley rats: (1) a single high-dose injection of STZ (HI STZ, 80 mg/kg, i.p.), which results in rapid chemical destruction of the pancreatic β-cells, and (2) multiple low-dose injections of STZ (LO STZ, 20 mg/kg for 5 consecutive days, i.p.), which results in a gradual, autoimmune destruction of β-cells. STZ-treated animals were killed after 3 weeks of hyperglycemia (>400 mg/dl), and in both paradigms circulating insulin levels were reduced to <40% of vehicle-treated controls. HI STZ-treated rats lost weight, while body weights of LO STZ-treated animals gradually increased over time, similar to vehicle-treated controls. As previously reported, HI STZ resulted in a decrease in circulating GH and IGF-I levels which was associated with a rise in hypothalamic neuropeptide Y (NPY) mRNA (355% of vehicle-treated controls) and a fall in GH-releasing hormone (GHRH) mRNA (45% of vehicle-treated controls) levels. Changes in hypothalamic neuropeptide expression were reflected by an increase in immunoreactive NPY within the arcuate and paraventricular nuclei and a decrease in GHRH immunoreactivity in the arcuate nucleus, as assessed by immunohistochemistry. Consistent with the decline in circulating GH and hypothalamic GHRH, pituitary GH mRNA levels of HI STZ-treated rats were 58% of controls. However, pituitary receptor mRNA levels for GHRH and ghrelin increased and those for somatostatin (sst2, sst3 and sst5) decreased following HI STZ treatment. The impact of LO STZ treatment on the GH axis differed from that observed following HI STZ treatment, despite comparable changes in circulating glucose and insulin. Specifically, LO STZ treatment did suppress circulating IGF-I levels to the same extent as HI STZ treatment; however, the impact on hypothalamic NPY mRNA levels was less dramatic (158% of vehicle-treated controls) where NPY immunoreactivity was increased only within the paraventricular nucleus. Also, there were no changes in circulating GH, hypothalamic GHRH or pituitary receptor expression following LO STZ treatment, with the exception that pituitary sst3 mRNA levels were suppressed compared with vehicle-treated controls. Taken together these results clearly demonstrate that insulinopenia, hyperglycemia and reduced circulating IGF-I levels are not the primary mediators of hypothalamic and pituitary changes in the GH axis of rats following HI STZ treatment. Changes in the GH axis of HI STZ-treated rats were accompanied by weight loss, and these changes are strikingly similar to those observed in the fasted rat, which suggests that factors associated with the catabolic state are critical in modifying the GH axis following STZ-induced diabetes.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3