Postprandial hormone and metabolic responses amongst shift workers in Antarctica

Author:

Lund J,Arendt J,Hampton SM,English J,Morgan LM

Abstract

The circadian rhythms of many night-shift workers are maladapted to their imposed behavioural schedule, and this factor may be implicated in the increased occurrence of cardiovascular disease (CVD) reported in shift workers. One way in which CVD risk could be mediated is through inappropriate hormonal and metabolic responses to meals. This study investigated the responses to standard meals at different circadian times in a group of night-shift workers on a British Antarctic Survey station at Halley Bay (75 degrees S) in Antarctica. Twelve healthy subjects (ten men and two women) were recruited. Their postprandial hormone and metabolic responses to an identical mixed test meal of 3330 kJ were measured on three occasions: (i) during daytime on a normal working day, (ii) during night-time at the beginning of a period of night-shift work, and (iii) during the daytime on return from night working to daytime working. Venous blood was taken for 9 h after the meal for the measurement of glucose, insulin, triacylglycerol (TAG) and non-esterified fatty acids. Urine was collected 4-hourly (longer during sleep) on each test day for assessment of the circadian phase via 6-sulphatoxymelatonin (aMT6s) assay. During normal daytime working, aMT6s acrophase was delayed (7.7+/-1.0 h (s.e.m.)) compared with that previously found in temperate zones in a comparable age-group. During the night shift a further delay was evident (11.8+/-1.9 h) and subjects' acrophases remained delayed 2 days after return to daytime working (12.4+/-1.8 h). Integrated postprandial glucose, insulin and TAG responses were significantly elevated during the night shift compared with normal daytime working. Two days after their return to daytime working, subjects' postprandial glucose and insulin responses had returned to pre-shift levels; however, integrated TAG levels remained significantly elevated. These results are very similar to those previously found in simulated night-shift conditions; it is the first time such changes have been reported in real shift workers in field conditions. They provide evidence that the abnormal metabolic responses to meals taken at night during unadapted night shifts are due, at least in part, to a relative insulin resistance, which could contribute to the documented cardiovascular morbidity associated with shift work. When applied to the 20% of the UK workforce currently employed on shift work, these findings have major significance from an occupational health perspective.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3