c-Myc protein is stabilized by fibroblast growth factor 2 and destabilized by ACTH to control cell cycle in mouse Y1 adrenocortical cells

Author:

Lepique Ana Paula,Moraes Miriam S,Rocha Kátia M,Eichler Claudia B,Hajj Glaucia N M,Schwindt Telma T,Armelin Hugo A

Abstract

ACTH is the hormone known to control adrenal cortex function and maintenance in the intact animal but, in culture, it inhibits proliferation of adrenocortical cells from different mammalian species, a puzzle that has remained unsolved for nearly 30 years. In this paper we compare ACTH and fibroblast growth factor 2 (FGF2) antagonistic effects on the cell cycle in the Y1 cell line, a functional lineage of mouse adreno-cortical tumor cells. This cell line displays chronic high levels of c-Ki-Ras-GTP, high active constitutive levels of phosphatidylinositol 3-OH kinase/Protein Kinase B (PI3K/AKT) and low constitutive basal expression of c-Myc, which accounts for a minor deregulation of the cell cycle. In G0/G1-arrested Y1 cells, over-expression of the dominant negative mutant HaRasN17 drastically reduces c-Ki-Ras-GTP levels, eliminating basal c-Myc expression and basal S phase entry. PI3K/Akt seems to be the downstream pathway from c-Ki-ras for deregulation of c-Myc basal expression, since wortmannin abolishes c-Myc expression in serum-starved, G0/G1-arrested Y1 cells. FGF2 is a strong mitogen for Y1 cells, promoting – in a manner dependent on the MEK/ERK pathway – c-myc transcription induction, c-Myc protein stabilization and S phase entry in G0/G1-arrested Y1 cells. On the other hand, ACTH causes c-Myc protein destabilization, partially blocking S phase entry induced by FGF2, by a process dependent on the cAMP/protein kinase A (PKA) pathway. The whole pathway activated by ACTH to destabilize c-Myc protein in Y1 cells might comprise the following steps: ACTH receptor →cAMP/PKA → Akt deactivation →GSK3 activity liberation → c-Myc Thr58 phosphorylation. We demonstrate that c-Myc regulation is a central key in the cell cycle control by these factors, since enforced expression of c-Myc through the MycER chimera abrogates the ACTH inhibitory effect over FGF2-induced S phase entry.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3