Affiliation:
1. Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, OR
2. Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR
Abstract
Despite a critical role for MYC as an effector of oncogenic RAS, strategies to target MYC activity in RAS-driven cancers are lacking. In genetically engineered mouse models of lung and pancreatic cancer, oncogenic KRAS is insufficient to drive tumorigenesis, while addition of modest MYC overexpression drives robust tumor formation, suggesting that mechanisms beyond the RAS pathway play key roles in MYC regulation and RAS-driven tumorigenesis. Here we show that acidic fibroblast growth factor (FGF1) derived from cancer-associated fibroblasts (CAFs) cooperates with cancer cell–autonomous signals to increase MYC level, promoter occupancy, and activity. FGF1 is necessary and sufficient for paracrine regulation of MYC protein stability, signaling through AKT and GSK-3β to increase MYC half-life. Patient specimens reveal a strong correlation between stromal CAF content and MYC protein level in the neoplastic compartment, and identify CAFs as the specific source of FGF1 in the tumor microenvironment. Together, our findings demonstrate that MYC is coordinately regulated by cell-autonomous and microenvironmental signals, and establish CAF-derived FGF1 as a novel paracrine regulator of oncogenic transcription.
Funder
National Cancer Institute
Medical Research Foundation
Publisher
Rockefeller University Press
Subject
Immunology,Immunology and Allergy
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献