Acidic fibroblast growth factor underlies microenvironmental regulation of MYC in pancreatic cancer

Author:

Bhattacharyya Sohinee1,Oon Chet1,Kothari Aayush1ORCID,Horton Wesley1,Link Jason2,Sears Rosalie C.2ORCID,Sherman Mara H.1ORCID

Affiliation:

1. Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, OR

2. Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR

Abstract

Despite a critical role for MYC as an effector of oncogenic RAS, strategies to target MYC activity in RAS-driven cancers are lacking. In genetically engineered mouse models of lung and pancreatic cancer, oncogenic KRAS is insufficient to drive tumorigenesis, while addition of modest MYC overexpression drives robust tumor formation, suggesting that mechanisms beyond the RAS pathway play key roles in MYC regulation and RAS-driven tumorigenesis. Here we show that acidic fibroblast growth factor (FGF1) derived from cancer-associated fibroblasts (CAFs) cooperates with cancer cell–autonomous signals to increase MYC level, promoter occupancy, and activity. FGF1 is necessary and sufficient for paracrine regulation of MYC protein stability, signaling through AKT and GSK-3β to increase MYC half-life. Patient specimens reveal a strong correlation between stromal CAF content and MYC protein level in the neoplastic compartment, and identify CAFs as the specific source of FGF1 in the tumor microenvironment. Together, our findings demonstrate that MYC is coordinately regulated by cell-autonomous and microenvironmental signals, and establish CAF-derived FGF1 as a novel paracrine regulator of oncogenic transcription.

Funder

National Cancer Institute

Medical Research Foundation

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3