A Cell-Free Assay System for β-Catenin Signaling That Recapitulates Direct Inductive Events in the Early Xenopus laevis Embryo

Author:

Nelson Richard W.1,Gumbiner Barry M.1

Affiliation:

1. Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021

Abstract

In vertebrate embryos, signaling via the β-catenin protein is known to play an essential role in the induction of the dorsal axis. In its signaling capacity, β-catenin acts directly to affect target gene transcription, in concert with transcription factors of the TCF/LEF family. We have developed a cell-free in vitro assay for β-catenin signaling activity that utilizes transcriptionally active nuclei and cytoplasm from cleavage-blocked Xenopus laevis embryos. Under these assay conditions, we demonstrate that either addition of β-catenin protein or upstream activation of the β-catenin signaling pathway can induce the expression of developmentally relevant target genes. Addition of exogenous β-catenin protein induced expression of Siamois, XTwin, Xnr3, and Cerberus mRNAs in a protein synthesis independent manner, whereas a panel of other Spemann organizer-specific genes did not respond to β-catenin. Lithium induction of the β-catenin signaling pathway, which is thought to cause β-catenin accumulation by inhibiting its proteasome-dependent degradation, caused increased expression of Siamois in a protein synthesis independent fashion. This result suggests that β-catenin derived from a preexisting pool can be activated to signal, and that accumulation of this activated form does not require ongoing synthesis. Furthermore, activation of the signaling pathway with lithium did not detectably alter cytoplasmic β-catenin levels and was insensitive to inhibition of the proteasome- dependent degradation pathway. Taken together, these results suggest that activation of β-catenin signaling by lithium in this system may occur through a distinct activation mechanism that does not require modulation of levels through regulation of proteasomal degradation.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3