Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF.

Author:

Wilson E1,Mai Q1,Sudhir K1,Weiss R H1,Ives H E1

Affiliation:

1. Division of Nephrology, University of California, San Francisco 94143.

Abstract

The effect of cyclic mechanical strain on growth of neonatal rat vascular smooth muscle (VSM) cells were examined. Cells were grown on silicone elastomer plates subjected to cyclic strain (60 cycle/min) by application of a vacuum under the plates. A 48 h exposure to mechanical strain increased the basal rate of thymidine incorporation by threefold and increased cell number by 40% compared with cells grown on stationary rubber plates. Strain also increased the rate of thymidine incorporation in response to alpha-thrombin (from 15- to 33-fold), but not to PDGF. As determined by thymidine autoradiography, strain alone induced a fourfold increase in labeled nuclei at the periphery of dishes, where strain is maximal, and a 2-3-fold increase at the center of dishes. Strain appeared to induce the production of an autocrine growth factor(s), since conditioned medium from cells subjected to strain induced a fourfold increase in DNA synthesis in control cells. Western blots of medium conditioned on the cells subjected to strain indicate that the cells secrete both AA and BB forms of PDGF in response to strain. Northern blots of total cell RNA from cells exposed to strain for 24 h show increased steady-state level of mRNA for PDGF-A. Lastly, polyclonal antibodies to the AA form of PDGF reduced by 75% the mitogenic effect of strain and polyclonal antibodies to AB-PDGF reduced mitogenicity by 50%. Antibodies to bFGF did not significantly reduce the strain-induced thymidine incorporation. Thus, the mechanism of strain-induced growth appears to involve the intermediary action of secreted PDGF.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 345 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3