Modelling Human Physiology on-Chip: Historical Perspectives and Future Directions

Author:

Pun Sirjana,Haney Li Cai,Barrile Riccardo

Abstract

For centuries, animal experiments have contributed much to our understanding of mechanisms of human disease, but their value in predicting the effectiveness of drug treatments in the clinic has remained controversial. Animal models, including genetically modified ones and experimentally induced pathologies, often do not accurately reflect disease in humans, and therefore do not predict with sufficient certainty what will happen in humans. Organ-on-chip (OOC) technology and bioengineered tissues have emerged as promising alternatives to traditional animal testing for a wide range of applications in biological defence, drug discovery and development, and precision medicine, offering a potential alternative. Recent technological breakthroughs in stem cell and organoid biology, OOC technology, and 3D bioprinting have all contributed to a tremendous progress in our ability to design, assemble and manufacture living organ biomimetic systems that more accurately reflect the structural and functional characteristics of human tissue in vitro, and enable improved predictions of human responses to drugs and environmental stimuli. Here, we provide a historical perspective on the evolution of the field of bioengineering, focusing on the most salient milestones that enabled control of internal and external cell microenvironment. We introduce the concepts of OOCs and Microphysiological systems (MPSs), review various chip designs and microfabrication methods used to construct OOCs, focusing on blood-brain barrier as an example, and discuss existing challenges and limitations. Finally, we provide an overview on emerging strategies for 3D bioprinting of MPSs and comment on the potential role of these devices in precision medicine.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3