Forecasting model of COVID-19 pandemic in Malaysia: An application of time series approach using neural network

Author:

Purwandari Titi,Zahroh Solichatus,Hidayat Yuyun,Sukonob Sukonob,Mamat Mustafa,Saputra Jumadil

Abstract

COVID-19 has spread to more than a hundred countries worldwide since the first case reported in late 2019 in Wuhan, China. As one of the countries affected by the spread of COVID-19 cases, the local government of Malaysia has issued several policies to reduce the spread of this outbreak. One of the measures taken by the Malaysian government, namely the Movement Control Order, has been carried out since March 18, 2020. In order to provide precise information to the government so that it can take the appropriate measures, many researchers have attempted to predict and create the model for these cases to identify the number of cases each day and the peak of this pandemic. Therefore, hospitals and health workers can anticipate a surge in COVID-19 patients. In this research, confirmed, recovered, and death cases prediction was performed using the neural network as one of the machine learning methods with high accuracy. The neural network model used is the Multi-Layer Perceptron, Neural Network Auto-Regressive, and Extreme Learning Machine. The three models calculated the average percentage error (APE) values for 7 days and obtained APE values for most cases less than 10%; only 1 case in the last day of one method had an APE value of approximately 11%. Furthermore, based on the best model, then the forecast is made for the next 7 days. In conclusion, this study identified that the MLP model is the best model for 7-step ahead forecasting for confirmed, recovered, and death cases in Malaysia. However, according to the result of testing data, the ELM performs better than the MLP model.

Publisher

Growing Science

Subject

General Decision Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3