A REVIEW ON EXTENSIVELY USED MACHINE LEARNING TECHNIQUES FOR THE PREDICTION OF COVID-19

Author:

ZOYA MOJAHID HAFIZA,Jasni Mohamad Zain ,ABDUL BASIT ,Mushtaq Ali ,Marina Yusoff

Abstract

Forecasting with a precise evaluation of new cases and the rate of occurrence is essential for the effective implementation of governmental initiatives and early prevention of any infectious illness. Despite the extensive research done on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus since the outbreak, not enough knowledge could be gained about the virus in terms of immune function, virus-host interactions, pathogenesis, propagation, and mutations. In this paper, various statistical models, namely Supervised Machine Learning techniques (ML), are being discussed for previous diseases and for the recent COVID-19 pandemic. Namely, the use of the Support Vector Machine (SVM) model and a variety of time series regression models is demonstrated for several infectious diseases, including COVID-19. As infectious diseases evolve throughout time, they provide data on a single variable, that is, “the figure of contaminations that occurred over time”; thus, researchers tend to use time series models to fit the data and make predictions using different evaluation metrics to find the best-fitting model. This review developed ideas about how to enhance the current modeling techniques. Furthermore, findings of current Machine Learning Techniques are being evaluated, which attempts to estimate the COVID-19 spread. Researchers looking for approaches to advance SARS-CoV-2 research as well as individuals curious about the field’s current condition will find this review to be helpful.

Publisher

Suranaree University of Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3