An integrated approach for modern supply chain management: Utilizing advanced machine learning models for sentiment analysis, demand forecasting, and probabilistic price prediction

Author:

Amellal Issam,Amellal Asmae,Seghiouer Hamid,Ech-Charrat Mohammed Rida

Abstract

In the contemporary business landscape, effective interpretation of customer sentiment, accurate demand forecasting, and precise price prediction are pivotal in making strategic decisions and efficiently allocating resources. Harnessing the vast array of data available from social media and online platforms, this paper presents an integrative approach employing machine learning, deep learning, and probabilistic models. Our methodology leverages the BERT transformer model for customer sentiment analysis, the Gated Recurrent Unit (GRU) model for demand forecasting, and the Bayesian Network for price prediction. These state-of-the-art techniques are adept at managing large-scale, high-dimensional data and uncovering hidden patterns, surpassing traditional statistical methods in performance. By bridging these diverse models, we aim to furnish businesses with a comprehensive understanding of their customer base and market dynamics, thus equipping them with insights to make informed decisions, optimize pricing strategies, and manage supply chain uncertainties effectively. The results demonstrate the strengths and areas for improvement of each model, ultimately presenting a robust and holistic approach to tackling the complex challenges of modern supply chain management.

Publisher

Growing Science

Subject

General Decision Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3