Biophysical characteristics of soybean estimated by remote sensing associated with artificial intelligence

Author:

Morlin Carneiro Franciele,Freire de Oliveira MailsonORCID,Luns Hatum de Almeida SamiraORCID,Lopes de Brito Filho Armando,Angeli Furlani Carlos EduardoORCID,De Souza Rolim Glauco,Ferraudo Antonio Sergio,Pereira da Silva RouversonORCID

Abstract

The biophysical characteristics of vegetative canopies, such as biomass, height, and canopy diameter, are of paramount importance for the study of the development and productive behavior of crops. Faced with a scarcity of studies aimed at estimating these parameters, the objective of this study was to evaluate the performance of artificial neural networks (ANNs) applied to Proximal Remote Sensing (PRS) to estimate biophysical characteristics of soybean culture. The data used to train and validate the ANNs came from an experiment composed of 65 plots with 30 x 30 m mesh, its development was carried out in the 2016/2017 crop in the Brazilian agricultural area. The evaluations were carried out at 30, 45, 60, and 75 days after sowing (DAS), monitoring the spatial and temporal variability of the biophysical characteristics of the soybean crop. Vegetation indexes were collected using canopy sensors. The accuracy and precision were determined by the coefficient of determination (R2) and the error of the forecasts by MAPE (Mean Absolute Percentage Error). PRS and ANNs showed high potential for application in agriculture, since they obtained good performance in the estimation of height (R2 = 0.89) and canopy diameter (R2 = 0.96), being fresh biomass (R2 =0.98) and dry biomass (R2 = 0.97) were the best-estimated variables.

Publisher

EDUFU - Editora da Universidade Federal de Uberlandia

Subject

General Agricultural and Biological Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3