Performance of Vegetation Indices to Estimate Green Biomass Accumulation in Common Bean

Author:

Barboza Thiago Orlando Costa1ORCID,Ardigueri Matheus1ORCID,Souza Guillerme Fernandes Castro1,Ferraz Marcelo Araújo Junqueira1,Gaudencio Josias Reis Flausino1,Santos Adão Felipe dos1ORCID

Affiliation:

1. Department of Agriculture, School of Agricultural Sciences of Lavras, Federal University of Lavras (UFLA), Lavras 37200-900, Brazil

Abstract

Remote sensing technology applied to agricultural crops has emerged as an efficient tool to speed up the data acquisition process in decision-making. In this study, we aimed to evaluate the performance of the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Red Edge (NDRE) in estimating biomass accumulation in common bean crops. The research was conducted at the Federal University of Lavras, where the ANFC 9 cultivar was used in an area of approximately seven hectares, in a second crop, in 2022. A total of 31 georeferenced points spaced at 50 m were chosen to evaluate height, width and green biomass, with collections on days 15, 27, 36, 58, 62 and 76 of the crop cycle. The images used in the study were obtained from the PlanetScope CubeSat satellite, with a spatial resolution of 3 m. The data obtained were subjected to a Pearson correlation (R) test and multiple linear regression analysis. The green biomass variable was significantly correlated with plant height and width. The NDVI performed better than the NDRE, with higher values observed at 62 Days After Sowing (DAS). The model that integrates the parameters of height, width and NDVI was the one that presented the best estimate for green biomass in the common bean crop. The M1 model showed the best performance to estimate green biomass during the initial stage of the crop, at 15, 27 and 36 DAS (R2 = 0.93). These results suggest that remote sensing technology can be effectively applied to assess biomass accumulation in common bean crops and provide accurate data for decision-makers.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Horticulture,Food Science,Agronomy and Crop Science

Reference54 articles.

1. De Oliveira, L.F.C., Oliveira, M.D.C., Wendland, A., Heinemann, A.B., Guimarães, C.M., Ferreira, E.D.B., Quintela, E.D., Barbosa, F.R., Carvalho, M.D., and Lobo, M. (2022, November 01). Conhecendo a Fenologia do Feijoeiro e Eus Aspectos Fitotécnicos. Brasília: Embrapa. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1085830/conhecendo-a-fenologia-do-feijoeiro-e-seus-aspectos-fitotecnicos.

2. CONAB—Companhia Nacional de Abastecimento (2022, November 01). Grãos, Safra 2021/2022. Primeiro Levantamento, Agosto de 2022, Available online: https://www.conab.gov.br/info-agro/safras/graos.

3. Índice de refletância na estimativa da área foliar e biomassa das folhas em feijão-comum;Heinemann;Colloq. Agrar. Pres. Prudente,2016

4. Análise dos índices de vegetação NDVI e NDRE em imagens obtidas por meio de sensor embarcado em um RPAS para as culturas da soja (Glycine max) e milho (Zea mays) irrigados;Sampaio;Rev. Bras. De Geomática,2021

5. Tsouros, D.C., Bibi, S., and Sarigiannidis, P.G. (2019). A Review on UAV-Based Applications for Precision Agriculture. Information, 10.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3