Precision Estimation of Crop Coefficient for Maize Cultivation Using High-Resolution Satellite Imagery to Enhance Evapotranspiration Assessment in Agriculture

Author:

Nagy Attila1ORCID,Kiss Nikolett Éva1,Buday-Bódi Erika1ORCID,Magyar Tamás1ORCID,Cavazza Francesco2ORCID,Gentile Salvatore Luca2,Abdullah Haidi3ORCID,Tamás János1,Fehér Zsolt Zoltán1ORCID

Affiliation:

1. Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Water and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary

2. Consorzio di Bonifica Canale Emiliano Romagnolo, Via E. Masi 8, 40137 Bologna, Italy

3. Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Drienerlolaan 5, P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract

The estimation of crop evapotranspiration (ETc) is crucial for irrigation water management, especially in arid regions. This can be particularly relevant in the Po Valley (Italy), where arable lands suffer from drought damages on an annual basis, causing drastic crop yield losses. This study presents a novel approach for vegetation-based estimation of crop evapotranspiration (ETc) for maize. Three years of high-resolution multispectral satellite (Sentinel-2)-based Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference Red Edge Index (NDRE), and Leaf Area Index (LAI) time series data were used to derive crop coefficients of maize in nine plots at the Acqua Campus experimental farm of Irrigation Consortium for the Emilia Romagna Canal (CER), Italy. Since certain vegetation indices (VIs) (such as NDVI) have an exponential nature compared to the other indices, both linear and power regression models were evaluated to estimate the crop coefficient (Kc). In the context of linear regression, the correlations between Food and Agriculture Organization (FAO)-based Kc and NDWI, NDRE, NDVI, and LAI-based Kc were 0.833, 0.870, 0.886, and 0.771, respectively. Strong correlation values in the case of power regression (NDWI: 0.876, NDRE: 0.872, NDVI: 0.888, LAI: 0.746) indicated an alternative approach to provide crop coefficients for the vegetation period. The VI-based ETc values were calculated using reference evapotranspiration (ET0) and VI-based Kc. The weather station data of CER were used to calculate ET0 based on Penman-Monteith estimation. Out of the Vis, NDWI and NDVI-based ETc performed the best both in the cases of linear (NDWI RMSE: 0.43 ± 0.12; NDVI RMSE: 0.43 ± 0.095) and power (NDWI RMSE: 0.44 ± 0.116; NDVI RMSE: 0.44 ± 0.103) approaches. The findings affirm the efficacy of the developed methodology in accurately assessing the evapotranspiration rate. Consequently, it offers a more refined temporal estimation of water requirements for maize cultivation in the region.

Funder

European Union’s Horizon 2020 “WATERAGRI Water retention and nutrient recycling in soils and streams for improved agricultural production”

János Bolyai Research Scholarship of the Hungarian Academy of Sciences

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3