Affiliation:
1. Research Institute for Mathematical Science, Kyoto University, Kyoto, Japan.Current address: Department of Mathematics and Computer Science, Faculty of Science, Kagoshima University, Kagoshima, Japan
Abstract
AbstractIn this paper, we introduce the notion of maximal actions of compact tori on smooth manifolds and study compact connected complex manifolds equipped with maximal actions of compact tori. We give a complete classification of such manifolds, in terms of combinatorial objects, which are triples {(\Delta,\mathfrak{h},G)} of nonsingular complete fan Δ in {\mathfrak{g}}, complex vector subspace {\mathfrak{h}} of {\mathfrak{g}^{\mathbb{C}}} and compact torus G satisfying certain conditions. We also give an equivalence of categories with suitable definitions of morphisms in these families, like toric geometry. We obtain several results as applications of our equivalence of categories; complex structures on moment-angle manifolds, classification of holomorphic nondegenerate {\mathbb{C}^{n}}-actions on compact connected complex manifolds of complex dimension n, and construction of concrete examples of non-Kähler manifolds.
Subject
Applied Mathematics,General Mathematics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献