Almost isotropy-maximal manifolds of non-negative curvature

Author:

Dong Zheting,Escher Christine,Searle Catherine

Abstract

We extend the equivariant classification results of Escher and Searle for closed, simply connected, Riemannian n n -manifolds with non-negative sectional curvature admitting isometric isotropy-maximal torus actions to the class of such manifolds admitting isometric strictly almost isotropy-maximal torus actions. In particular, we prove that any such manifold is equivariantly diffeomorphic to the free, linear quotient by a torus of a product of spheres of dimensions greater than or equal to three.

Funder

Simons Foundation

Publisher

American Mathematical Society (AMS)

Reference29 articles.

1. Pure and Applied Mathematics, Vol. 46;Bredon, Glen E.,1972

2. Mathematical Surveys and Monographs;Buchstaber, Victor M.,2015

3. The splitting theorem for manifolds of nonnegative Ricci curvature;Cheeger, Jeff;J. Differential Geometry,1971

4. When are two Coxeter orbifolds diffeomorphic?;Davis, Michael W.;Michigan Math. J.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3