Basic Cohomology of Canonical Holomorphic Foliations on Complex Moment-Angle Manifolds

Author:

Ishida Hiroaki1,Krutowski Roman2,Panov Taras3

Affiliation:

1. Department of Mathematics and Computer Science, Graduate School of Science and Engineering, Kagoshima University, 890-0065 Kagoshima, Japan

2. Faculty of Mathematics, International Laboratory of Mirror Symmetry and Automorphic Forms, National Research University Higher School of Economics, 119048 Moscow, Russia

3. Department of Mathematics and Mechanics, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia; Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow

Abstract

Abstract We describe the basic cohomology ring of the canonical holomorphic foliation on a moment-angle manifold, LVMB-manifold, or any complex manifold with a maximal holomorphic torus action. Namely, we show that the basic cohomology has a description similar to the cohomology ring of a complete simplicial toric variety due to Danilov and Jurkiewicz. This settles a question of Battaglia and Zaffran, who previously computed the basic Betti numbers for the canonical holomorphic foliation in the case of a shellable fan. Our proof uses an Eilenberg–Moore spectral sequence argument; the key ingredient is the formality of the Cartan model for the torus action on a moment-angle manifold. We develop the concept of transverse equivalence as an important tool for studying smooth and holomorphic foliated manifolds. For an arbitrary complex manifold with a maximal torus action, we show that it is transverse equivalent to a moment-angle manifold and therefore has the same basic cohomology.

Funder

Grant-in-Aid for Young Scientists

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference20 articles.

1. Foliations modeling nonrational simplicial toric varieties;Battaglia;Int. Math. Res. Not.,2015

2. Variétés complexes compactes: une généralisation de la construction de Meersseman et López de Medrano–Verjovsky;Bosio;Ann. Inst. Fourier (Grenoble),2001

3. Torus actions, combinatorial topology and homological algebra;Buchstaber;Russian Math. Surveys,2000

4. The geometry of toric varieties;Danilov;Russian Math. Surveys,1978

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Basic kirwan injectivity and its applications;The Quarterly Journal of Mathematics;2022-12-03

2. Toric Quasifolds;The Mathematical Intelligencer;2022-09-27

3. Dolbeault cohomology of complex manifolds with torus action;Topology, Geometry, and Dynamics;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3