Improving binary crow search algorithm for feature selection

Author:

Hamed Alnaish Zakaria A.1,Algamal Zakariya Yahya23

Affiliation:

1. College of Sciences, University of Mosul , 41001 Mosul , Iraq

2. Department of Statistics and Informatics, University of Mosul , 41001 Mosul , Iraq

3. College of Engineering, University of Warith Al-Anbiyaa , 56001 Karbala , Iraq

Abstract

Abstract The feature selection (FS) process has an essential effect in solving many problems such as prediction, regression, and classification to get the optimal solution. For solving classification problems, selecting the most relevant features of a dataset leads to better classification accuracy with low training time. In this work, a hybrid binary crow search algorithm (BCSA) based quasi-oppositional (QO) method is proposed as an FS method based on wrapper mode to solve a classification problem. The QO method was employed in tuning the value of flight length in the BCSA which is controlling the ability of the crows to find the optimal solution. To evaluate the performance of the proposed method, four benchmark datasets have been used which are human intestinal absorption, HDAC8 inhibitory activity (IC50), P-glycoproteins, and antimicrobial. Accordingly, the experimental results are discussed and compared against other standard algorithms based on the accuracy rate, the average number of selected features, and running time. The results have proven the robustness of the proposed method relied on the high obtained value of accuracy (84.93–95.92%), G-mean (0.853–0.971%), and average selected features (4.36–11.8) with a relatively low computational time. Moreover, to investigate the effectiveness of the proposed method, Friedman test was used which declared that the performance supremacy of the proposed BCSA-QO with four datasets was very evident against BCSA and CSA by selecting the minimum relevant features and producing the highest accuracy classification rate. The obtained results verify the usefulness of the proposed method (BCSA-QO) in the FS with classification in terms of high classification accuracy, a small number of selected features, and low computational time.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3