Affiliation:
1. Institute of Applied System Analysis, Jiangsu University , Zhenjiang , Jiangsu, 212013 , P. R. China
Abstract
Abstract
In the present paper, we study the existence of the normalized solutions for the following coupled elliptic system with quadratic nonlinearity
−
Δ
u
−
λ
1
u
=
μ
1
∣
u
∣
u
+
β
u
v
in
R
N
,
−
Δ
v
−
λ
2
v
=
μ
2
∣
v
∣
v
+
β
2
u
2
in
R
N
,
\left\{\begin{array}{ll}-\Delta u-{\lambda }_{1}u={\mu }_{1}| u| u+\beta uv\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\\ -\Delta v-{\lambda }_{2}v={\mu }_{2}| v| v+\frac{\beta }{2}{u}^{2}\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\end{array}\right.
where
u
,
v
u,v
satisfying the additional condition
∫
R
N
u
2
d
x
=
a
1
,
∫
R
N
v
2
d
x
=
a
2
.
\mathop{\int }\limits_{{{\mathbb{R}}}^{N}}{u}^{2}{\rm{d}}x={a}_{1},\hspace{1em}\mathop{\int }\limits_{{{\mathbb{R}}}^{N}}{v}^{2}{\rm{d}}x={a}_{2}.
On the one hand, we prove the existence of minimizer for the system with
L
2
{L}^{2}
-subcritical growth (
N
≤
3
N\le 3
). On the other hand, we prove the existence results for different ranges of the coupling parameter
β
>
0
\beta \gt 0
with
L
2
{L}^{2}
-supercritical growth (
N
=
5
N=5
). Our argument is based on the rearrangement techniques and the minimax construction.
Subject
General Mathematics,Statistical and Nonlinear Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献