Affiliation:
1. Center for Mathematical Sciences , Wuhan University of Technology , Wuhan 430070 , P.R. China
2. School of Mathematical Sciences , Beijing Normal University , Beijing 100875 , P.R. China
Abstract
Abstract
In the present paper, we consider the coupled Schrödinger systems with critical exponent:
−
Δ
u
i
+
λ
V
i
(
x
)
+
a
i
u
i
=
∑
j
=
1
d
β
i
j
u
j
3
u
i
u
i
in
R
3
,
u
i
∈
H
1
(
R
N
)
,
i
=
1,2
,
…
,
d
,
$$\begin{cases}-{\Delta}{u}_{i}+\left(\lambda {V}_{i}\left(x\right)+{a}_{i}\right){u}_{i}=\sum _{j=1}^{d}{\beta }_{ij}{\left\vert {u}_{j}\right\vert }^{3}\left\vert {u}_{i}\right\vert {u}_{i}\quad \,\text{in}\,{\mathbb{R}}^{3},\quad \hfill \\ {u}_{i}\in {H}^{1}\left({\mathbb{R}}^{N}\right),\quad i=1,2,\dots ,d,\quad \hfill \end{cases}$$
where d ≥ 2, β
ii
> 0 for every i, β
ij
= β
ji
when i ≠ j, λ > 0 is a parameter and
0
≤
V
i
∈
L
loc
∞
R
N
$0\le {V}_{i}\in {L}_{\text{loc\,}}^{\infty }\left({\mathbb{R}}^{N}\right)$
have a common bottom int
V
i
−
1
(
0
)
${V}_{i}^{-1}\left(0\right)$
composed of
ℓ
0
ℓ
0
≥
1
${\ell }_{0}\left({\ell }_{0}\ge 1\right)$
connected components
Ω
k
k
=
1
ℓ
0
${\left\{{{\Omega}}_{k}\right\}}_{k=1}^{{\ell }_{0}}$
, where int
V
i
−
1
(
0
)
${V}_{i}^{-1}\left(0\right)$
is the interior of the zero set
V
i
−
1
(
0
)
=
x
∈
R
N
∣
V
i
(
x
)
=
0
${V}_{i}^{-1}\left(0\right)=\left\{x\in {\mathbb{R}}^{N}\mid {V}_{i}\left(x\right)=0\right\}$
of V
i
. We study the existence of least energy positive solutions to this system which are trapped near the zero sets int
V
i
−
1
(
0
)
${V}_{i}^{-1}\left(0\right)$
for λ > 0 large for weakly cooperative case
β
i
j
>
0
s
m
a
l
l
$\left({\beta }_{ij}{ >}0 \mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l}\right)$
and for purely competitive case
β
i
j
≤
0
$\left({\beta }_{ij}\le 0\right)$
. Besides, when d = 2, we construct a one-bump fully nontrivial solution which is localised at one prescribed components
Ω
k
k
=
1
ℓ
${\left\{{{\Omega}}_{k}\right\}}_{k=1}^{\ell }$
for large λ.