Experimental studies on water absorption and mechanical properties of Hibiscus sabdariffa (Roselle) and Urena lobata (Caesar weed) plant Fiber–Reinforced hybrid epoxy composites: effect of weight fraction of nano-graphene fillers

Author:

Sasi Kumar Mani1,Sathish Selvaraj2,Makeshkumar Mani2,Gokulkumar Sivanantham2

Affiliation:

1. Department of Aeronautical Engineering , KIT–Kalaignarkarunanidhi Institute of Technology , Coimbatore 641402 , Tamil Nadu , India

2. Department of Mechanical Engineering , KPR Institute of Engineering and Technology , Coimbatore 641407 , Tamil Nadu , India

Abstract

Abstract This study aimed to develop novel hybrid composites with graphene (Gr) fillers incorporated in the epoxy (E) matrix with Caesar weed fiber (CF), and roselle fiber (RF) as reinforcements. Compression molding methods were used to fabricate hybrid composite materials with a variable-weight graphene filler in a constant fiber epoxy matrix. On the basis of the results, the mechanical characteristics of the composite with 6 wt% Gr exhibited the greatest flexural strength, tensile strength, and impact strength. This occurred because 6 wt% Gr particles are more uniformly dispersed in an epoxy matrix, resulting in better compatibility between reinforcementand matrix, thus increasing the mechanical properties. The composite with 8 wt% Gr filler reinforcement had the maximum hardness rating and the lowest percentage of water absorption. According to the results, adding graphene fillers to the CF/RF/E composite significantly improved the mechanical and water absorption performances. Scanning electron microscopy was used to examine the surfaces of the fabricated samples. The weight fraction of the graphene filler was optimized to enhance the mechanical properties of the composite for use in various engineering applications, such as automobile, defense, marine, sports, and musical instruments.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3