Investigation of the effects of water uptake on the mechanical properties of wood dust particle filled Prosopis Juliflora reinforced phenol formaldehyde hybrid polymer composites

Author:

Brindha Ganesan1,Arul Sujin Jose2,Lenin A. Haiter3,Premila Jani Stanly Kochappa4

Affiliation:

1. Department of Electronics and Instrumentation Engineering , Meenakshi College of Engineering , Chennai , Tamil Nadu , India

2. New Horizon College of Engineering , Bangalore , Karnataka , India , 560103

3. Department of Mechanical Engineering , WOLLO University, Kombolcha Institute of Technology , Kombolcha , Ethiopia

4. Department of Mechanical engineering , Marri laxman Reddy institute of Technology and Management , Hyderabad , 500043 , India

Abstract

Abstract The water uptake behavior of Wood Dust (WD)/Prosopis Juliflora Fiber (PJF)/Phenol-Formaldehyde (PF) hybrid composites which are immersed in distilled and seawater environments was evaluated. Three different composite samples were fabricated by reinforcing WD and PJF with PF resin. The fabricated specimens were immersed in sea and distilled water to note down the moisture content absorption of the specimens for different time intervals from 0 to 240 h. The dry and wet specimens underwent mechanical properties testing as per ASTM standards and the findings for wet and dry specimens have been compared and analyzed. It is observed that the specimens which are immersed in sea (salt) water absorb more moisture content than the specimen immersed in distilled water and the PJF-rich (30 wt% of PJF & 10 wt % of WD) specimen absorbs more water than the other specimens. The water uptake behavior of the WD/PJF/PF hybrid composite follows a non-Fickian behavior. The mechanical performance (tensile, flexural, and impact) of the 10 wt % of WD 30 wt % of PJF specimen was better than that of other specimens at dry (before immersion) conditions and lost strength when immersed in sea and distilled water. SEM analysis was also done on the broken surface of the tested specimens which were exposed to the water environment.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DESIGN A SINGLE SCREW EXTRUDER FOR POLYMER-BASED TISSUE ENGINEERING;Biomedical Engineering: Applications, Basis and Communications;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3