Thin SixNyCz films deposited from hexamethyldisilazane by RF PECVD technique for optical filter applications

Author:

Oleśko Katarzyna1,Szymanowski Hieronim1,Gazicki-Lipman Maciej1,Balcerzak Jacek2,Ski Witold Szymań1,Pawlak Wojciech1,Sobczyk-Guzenda Anna1

Affiliation:

1. Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz , Poland

2. Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz , Poland

Abstract

Abstract This work initiates a series of reports aimed at a construction of rugate optical filters based on silicon rich materials of alternating gradients of refractive index n with the help of plasma enhanced chemical vapor deposition (PECVD) technique, The idea is to start deposition of high refractive index SixNy type of material using hexamethyldisilazane (HMDSN) vapor and nitrogen rich atmosphere, and then to gradually replace nitrogen with oxygen in that atmosphere in order to lower n down to a minimum characteristic of SixOy type of material. A return to initial gas composition should increase the index back to its maximum. In the present work, thin SixNyCz films were synthesized from a mixture of HMDSN vapor with gaseous NH3 and N2. The effect of NH3/N2 ratio on the coating morphology, its elemental composition, chemical bonding and optical properties was studied using scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, ultra-violet absorption spectroscopy and variable angle spectroscopic ellipsometry. The results show that films of the highest index of refraction and the lowest extinction coefficient have been deposited from the gas mixture containing 90 % of ammonia. These coatings are also characterized by the lowest carbon and the highest nitrogen contents.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3