Perturbation of elliptic operators in 1-sided NTA domains satisfying the capacity density condition

Author:

Akman Murat1,Hofmann Steve2,Martell José María3ORCID,Toro Tatiana4

Affiliation:

1. Department of Mathematical Sciences , University of Essex , Colchester CO4 3SQ , United Kingdom

2. Department of Mathematics , University of Missouri , Columbia , MO 65211 , USA

3. Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM , Consejo Superior de Investigaciones Científicas, C/ Nicolás Cabrera, 13-15, 28049 Madrid , Spain

4. Department of Mathematics , University of Washington , Box 354350 , Seattle , WA 98195-4350 , USA

Abstract

Abstract Let Ω n + 1 {\Omega\subset\mathbb{R}^{n+1}} , n 2 {n\geq 2} , be a 1-sided non-tangentially accessible domain (aka uniform domain), that is, Ω satisfies the interior Corkscrew and Harnack chain conditions, which are respectively scale-invariant/quantitative versions of openness and path-connectedness. Let us assume also that Ω satisfies the so-called capacity density condition, a quantitative version of the fact that all boundary points are Wiener regular. Consider L 0 u = - div ( A 0 u ) {L_{0}u=-\mathrm{div}(A_{0}\nabla u)} , L u = - div ( A u ) {Lu=-\mathrm{div}(A\nabla u)} , two real (non-necessarily symmetric) uniformly elliptic operators in Ω, and write ω L 0 {\omega_{L_{0}}} , ω L {\omega_{L}} for the respective associated elliptic measures. The goal of this program is to find sufficient conditions guaranteeing that ω L {\omega_{L}} satisfies an A {A_{\infty}} -condition or a RH q {\mathrm{RH}_{q}} -condition with respect to ω L 0 {\omega_{L_{0}}} . In this paper we establish that if the discrepancy of the two matrices satisfies a natural Carleson measure condition with respect to ω L 0 {\omega_{L_{0}}} , then ω L A ( ω L 0 ) {\omega_{L}\in A_{\infty}(\omega_{L_{0}})} . Additionally, we can prove that ω L RH q ( ω L 0 ) {\omega_{L}\in\mathrm{RH}_{q}(\omega_{L_{0}})} for some specific q ( 1 , ) {q\in(1,\infty)} , by assuming that such Carleson condition holds with a sufficiently small constant. This “small constant” case extends previous work of Fefferman–Kenig–Pipher and Milakis–Pipher together with the last author of the present paper who considered symmetric operators in Lipschitz and bounded chord-arc domains, respectively. Here we go beyond those settings, our domains satisfy a capacity density condition which is much weaker than the existence of exterior Corkscrew balls. Moreover, their boundaries need not be Ahlfors regular and the restriction of the n-dimensional Hausdorff measure to the boundary could be even locally infinite. The “large constant” case, that is, the one on which we just assume that the discrepancy of the two matrices satisfies a Carleson measure condition, is new even in the case of nice domains (such as the unit ball, the upper-half space, or non-tangentially accessible domains) and in the case of symmetric operators. We emphasize that our results hold in the absence of a nice surface measure: all the analysis is done with the underlying measure ω L 0 {\omega_{L_{0}}} , which behaves well in the scenarios we are considering. When particularized to the setting of Lipschitz, chord-arc, or 1-sided chord-arc domains, our methods allow us to immediately recover a number of existing perturbation results as well as extend some of them.

Funder

European Research Council

Ministry for Science and Innovation

National Science Foundation

Simons Foundation

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3